高等数学 第六版 上册.pdf

创建时间:2019-01-05 下载量:0 访问量:89 赞:0 踩:0
ISBN:9787040205497
简介:
本书是同济大学数学系编《高等数学》的第六版,依据*的“工科类本科数学基础课程教学基本要求”,为高等院校工科类各专业学生修订而成。
关注“工联信息网”回复“pajN7zifwh”可领取!仅供学习使用,支持正版!
详细介绍

前辅文
第一章 函数与极限
第一节 映射与函数
二、映射
三、函数
习题1-1
第二节 数列的极限
一、数列极限的定义
二、收敛数列的性质
习题1-2
第三节 函数的极限
一、函数极限的定义
二、函数极限的性质
习题1-3
第四节 无穷小与无穷大
一、无穷小
二、无穷大
习题1-4
第五节 极限运算法则
习题1-5
第六节 极限存在准则 两个重要极限
习题1-6
第七节 无穷小的比较
习题1-7
第八节 函数的连续性与间断点
一、函数的连续性
二、函数的间断点
习题1-8
第九节 连续函数的运算与初等函数的连续性
一、连续函数的和、差、积、商的连续性
二、反函数与复合函数的连续性
三、初等函数的连续性
习题1-9
第十节 闭区间上连续函数的性质
一、有界性与最大值最小值定理
二、零点定理与介值定理
*三、一致连续性
习题1-10
总习题一
第二章 导数与微分
第一节 导数概念
一、引例
二、导数的定义
三、导数的几何意义
四、函数可导性与连续性的关系
习题2-1
第二节 函数的求导法则
一、函数的和、差、积、商的求导法则
二、反函数的求导法则
三、复合函数的求导法则
四、基本求导法则与导数公式
习题2-2
第三节 高阶导数
习题2-3
第四节 隐函数及由参数方程所确定的函数的导数 相关变化率
一、隐函数的导数
二、由参数方程所确定的函数的导数
三、相关变化率
习题2-3
第五节 函数的微分
一、微分的定义
二、微分的几何意义
三、基本初等函数的
微分公式与微分运算法则
四、微分在近似计算中的应用
习题2-5
总习题二
第三章 微分中值定理与导数的应用
第一节 微分中值定理
一、罗尔定理
二、拉格朗日中值定理
三、柯西中值3-1
第二节 洛必达法则
习题3-2
第三节 泰勒公式
习题3-3
第四节 函数的单调性与曲线的凹凸性
一、函数单调性的判定法
二、曲线的凹凸性与拐点
习题3-4
第五节 函数的极值与最大值最小值
一、函数的极值及其求法
二、最大值最小值问题
习题3-5
第六节 函数图形的描绘
习题3-6
第七节 曲率
一、弧微分
二、曲率及其计算公式
三、曲率圆与曲率半径
*四、曲率中心的计算公式 渐屈线与渐伸线
习题3-7
第八节 方程的近似解
一、二分法
二、切线法
习题3-8
总习题三
第四章 不定积分
第一节 不定积分的概念与性质
一、原函数与不定积分的概念
二、基本积分表
三、不定积分的性质
习题4-1
第二节 换元积分法
一、第一类换元法
二、第二类换元法
习题4-2
第三节 分部积分法
习题4-3
第四节 有理函数的积分
一、有理函数的积分
二、可化为有理函数的积分举例
习题4-4
第五节 积分表的使用
习题4-5
总习题四
第五章 定积分
第一节 定积分的概念与性质
一、定积分问题举例
二、定积分定义
三、定积分的近似计算
四、定积分的性质
习题5-1
第二节 微积分基本公式
一、变速直线运动中位置函数与速度函数之间的联系
二、积分上限的函数及其导数
三、牛顿-莱布尼茨公式
习题5-2
第三节 定积分的换元法和分部积分法
一、定积分的换元法
二、定积分的分部积分法
习题5-3
第四节 反常积分
一、无穷限的反常积分
二、无界函数的反常积分
习题5-4
*第五节
...... 

如有需求您可以发送邮件致:need@glxxw2018.com(仅限本站无法查询到的资料,本站有的或因版权问题无法下载的一律不回复);本站能够查询到的资料请关注“工联信息网”公众号,通过资料页面提供的资源码查询!。

如果认为资源侵犯了您的版权,您可以将相关著作权材料发送致邮箱:accusation@glxxw2018.com,管理员会在1个工作日内删除。

本站资源来源于互联网,如果您喜欢,请支持正版,谢谢!

关注“工联信息网”微信公众号回复“pajN7zifwh”即可获取!
评论
 我想说:
==已经到底了==
工联信息网
如有问题请致邮箱:need@glxxw2018.com(仅限本站无法查询到的资料);本站能够查询到的资料请关注“工联信息网”公众号,通过页面提供的资源码查询!
不良信息反馈及侵权投诉建议请致邮箱:accusation@glxxw2018.com